Algunas partes de este artículo pueden resultar complicadas, en ese caso se recomienda



Descargar 240.41 Kb.
Página1/4
Fecha de conversión26.04.2018
Tamaño240.41 Kb.
  1   2   3   4
Relatividad general

Algunas partes de este artículo pueden resultar complicadas, en ese caso se recomienda Introducción a la relatividad general.

http://upload.wikimedia.org/wikipedia/commons/thumb/9/96/sn_2006gy%2c_nasa_illustration.jpg/250px-sn_2006gy%2c_nasa_illustration.jpg

Representación artística de la explosión de la supernova SN 2006gy, situada a 238 millones de años luz. De ser válido el principio de acción a distancia, las perturbaciones de origen gravitatorio de este estallido nos afectarían inmediatamente, más tarde nos llegarían las de origen electromagnético, que se transmiten a la velocidad.

La teoría general de la relatividad o relatividad general es una teoría del campo gravitatorio y de los sistemas de referencia generales, publicada por Albert Einstein en 1915 y 1916.

El nombre de la teoría se debe a que generaliza la llamada teoría especial de la relatividad. Los principios fundamentales introducidos en esta generalización son el principio de equivalencia, que describe la aceleración y la gravedad como aspectos distintos de la misma realidad, la noción de la curvatura del espacio-tiempo y el principio de covariancia generalizado.

La intuición básica de Einstein fue postular que en un punto concreto no se puede distinguir experimentalmente entre un cuerpo acelerado uniformemente y un campo gravitatorio uniforme. La teoría general de la relatividad permitió también reformular el campo de la cosmología.

Historia


Poco después de la formulación de la teoría de la relatividad especial en 1905, Albert Einstein comenzó a elucubrar cómo describir los fenómenos gravitatorios con ayuda de la nueva mecánica. En 1907 se embarcó en la búsqueda de una nueva teoría relativista de la gravedad que duraría ocho años. Después de numerosos desvíos y falsos comienzos, su trabajo culminó en noviembre de 1915 con la presentación a la Academia Prusiana de las Ciencias de su artículo, que contenía las que hoy son conocidas como "Ecuaciones de Campo de Einstein". Estas ecuaciones forman el núcleo de la teoría y especifican cómo la densidad local de materia y energía determina la geometría del espacio-tiempo.

Las ecuaciones de campo de Einstein son no lineales y muy difíciles de resolver. Einstein utilizó los métodos de aproximación en la elaboración de las predicciones iniciales de la teoría. Pero ya en 1916, el astrofísico Karl Schwarzschild encontró la primera solución exacta no trivial de las Ecuaciones de Campo de Einstein, la llamada Métrica de Schwarzschild. Esta solución sentó

las bases para la descripción de las etapas finales de un colapso gravitacional, y los objetos que hoy conocemos como agujeros negros. En el mismo año, se iniciaron los primeros pasos hacia la generalización de la solución de Schwarzschild a los objetos con carga, obteniéndose así la solución de Reissner-Nordström, ahora asociada con la carga eléctrica de los agujeros negros.

En 1917, Einstein aplicó su teoría al universo en su conjunto, iniciando el campo de la cosmología relativista. En línea con el pensamiento contemporáneo, en el que se suponía que el universo era estático, agregó a sus ecuaciones una constante cosmológica para reproducir esa "observación". En 1929, sin embargo, el trabajo de Hubble y otros demostraron que nuestro universo se está expandiendo. Esto es fácilmente descrito por las soluciones encontradas por Friedman en 1922 para la expansión cosmológica, que no requieren de una constante cosmológica. Lemaître utilizó estas soluciones para formular la primera versión de los modelos del Big Bang, en la que nuestro universo ha evolucionado desde un estado anterior extremadamente caliente y denso. Einstein declaró más tarde que agregar esa constante cosmológica a sus ecuaciones fue el mayor error de su vida.

Durante ese período, la relatividad general se mantuvo como una especie de curiosidad entre las teorías físicas. Fue claramente superior a la gravedad newtoniana, siendo consistente con la relatividad especial y contestaba varios efectos no explicados por la teoría newtoniana. El mismo Einstein había demostrado en 1915 cómo su teoría lograba explicar el avance del perihelio anómalo del planeta Mercurio sin ningún parámetro arbitrario. Del mismo modo, en una expedición de 1919 liderada por Eddington confirmaron la predicción de la relatividad general para la desviación de la luz estelar por el Sol durante el eclipse total de Sol del 29 de mayo de 1919, haciendo famoso a Einstein instantáneamente. Sin embargo, esta teoría ha entrado en la corriente de la física teórica y la astrofísica desarrolladas aproximadamente entre 1960 y 1975, ahora conocido como la edad de oro de la relatividad general. Los físicos empezaron a comprender el concepto de agujero negro, y a identificar la manifestación de objetos astrofísicos como los cuásares. Cada vez más precisas, las pruebas del solar confirmaron el poder predictivo de la teoría, y la cosmología relativista, también se volvió susceptible a encaminar pruebas observacionales.

¿Por qué es necesaria la teoría de relatividad general?

Los éxitos explicativos de la teoría de la relatividad especial condujeron a la aceptación de la teoría prácticamente por la totalidad de los físicos. Eso llevó a que antes de la formulación de la relatividad general existieran dos teorías físicas incompatibles:


  • La teoría especial de la relatividad, covariante en el sentido de Lorentz, que integraba adecuadamente el electromagnetismo, y que descarta explícitamente las acciones.

  • La teoría de la gravitación de Newton, explícitamente no-covariante, que explicaba de manera adecuada la gravedad mediante acciones instantáneas a distancia (concepto de fuerza a distancia).

La necesidad de buscar una teoría que integrase, como casos límites particulares, las dos anteriores requería la búsqueda de una teoría de la gravedad que fuese compatible con los nuevos principios relativistas introducidos por Einstein. Además de incluir la gravitación en una teoría de formulación covariante, hubo otra razón adicional. Einstein había concebido la teoría especial de la relatividad como una teoría aplicable sólo a sistemas de referencia inerciales, aunque realmente puede generalizarse a sistemas acelerados sin necesidad de introducir todo el aparato de la relatividad general. La insatisfacción de Einstein con su creencia de que la teoría era aplicable sólo a sistemas inerciales le llevó a buscar una teoría que proporcionara descripciones físicas adecuadas para un sistema de referencia totalmente general.

Esta búsqueda era necesaria, ya que según la relatividad especial ninguna información puede viajar a mayor velocidad que la luz, y por lo tanto no puede existir relación de causalidad entre dos eventos unidos por un intervalo espacial. Sin embargo, uno de los pilares fundamentales de la gravedad newtoniana, el principio de acción a distancia, supone que las alteraciones producidas en el campo gravitatorio se transmiten instantáneamente a través del espacio. La contradicción entre ambas teorías es evidente, puesto que asumir las tesis de Newton llevaría implícita la posibilidad de que un observador fuera afectado por las perturbaciones gravitatorias producidas fuera de su cono de luz.

Einstein resolvió este problema interpretando los fenómenos gravitatorios como simples alteraciones de la curvatura del espacio-tiempo producidas por la presencia de masas. De ello se deduce que el campo gravitatorio, al igual que el campo electromagnético, tiene una entidad física independiente y sus variaciones se transmiten a una velocidad finita en forma de ondas gravitacionales. La presencia de masa, energía o momentum en una determinada región de la variedad tetradimensional, provoca la alteración de los coeficientes de la métrica, en una forma cuyos detalles pormenorizados analizaremos en las secciones siguientes.

En esta visión, la gravitación sólo sería una pseudo-fuerza (equivalente a la fuerza de Coriolis, o a la fuerza centrífuga) efecto de haber escogido un sistema de referencia no-inercial.

Principios generales

Las características esenciales de la teoría de la relatividad general son las siguientes:



  • El principio general de covariancia: las leyes de la Física deben tomar la misma forma matemática en todos los sistemas de coordenadas.

  • El principio de equivalencia o de invariancia local de Lorentz: las leyes de la relatividad especial (espacio plano de Minkowsky) se aplican localmente para todos los observadores inerciales.

  • La curvatura del espacio-tiempo es lo que observamos como un campo gravitatorio, en presencia de materia la geometría del espacio-tiempo no es plana sino curva, una partícula en movimiento libre inercial en el seno de un campo gravitatorio sigue una trayectoria geodésica.



Principio de covariancia: El principio de covariancia es la generalización de la teoría de la relatividad especial, donde se busca que las leyes físicas tengan la misma forma en todos los sistemas. Esto último equivale a que todos los sistemas de referencia sean indistinguibles, y desde el punto de vista físico equivalentes. En otras palabras, que cualquiera que sea el movimiento de los observadores, las ecuaciones tendrán la misma forma matemática y contendrán los mismos términos. Ésta fue la principal motivación de Einstein para que estudiara y postulara la relatividad general.http://upload.wikimedia.org/wikipedia/commons/thumb/c/cb/s95e5221.jpg/250px-s95e5221.jpg

El principio de covariancia sugería que las leyes debían escribirse en términos de tensores, cuyas leyes de transformación covariante y contravariantes podían proporcionar la "invariancia" de forma buscada, satisfaciéndose el principio físico de covariancia.



El principio de equivalencia
Los dos astronautas de la imagen se encuentran en una nave en caída libre. Por ello no experimentan gravedad alguna (su estado se describe coloquialmente como de "gravedad cero"). Se dice por ello que son observadores inerciales.

Un hito fundamental en el desarrollo de la teoría de la relatividad general lo constituye el principio de equivalencia, enunciado por Albert Einstein en el año 1912 y al que su autor calificó como «la idea más feliz de mi vida». Dicho principio supone que un sistema que se encuentra en caída libre y otro que se mueve en una región del espacio-tiempo sin gravedad se encuentran en un estado físico similar: en ambos casos se trata de sistemas inerciales.

Galileo distinguía entre cuerpos de movimiento inercial (en reposo o moviéndose a velocidad constante) y cuerpos de movimiento no inercial (sometidos a un movimiento acelerado). En virtud de la segunda ley de Newton (que se remonta a los trabajos del dominico español Domingo de Soto), toda aceleración estaba causada por la aplicación de una fuerza exterior. La relación entre fuerza y aceleración se expresaba mediante esta fórmula:

m = \frac{f}{a}

donde a es la aceleración, F la fuerza y m la masa. La fuerza podía ser de origen mecánico, electromagnético o, cómo no, gravitatorio. Según los cálculos de Galileo, la aceleración gravitatoria de los cuerpos era constante y equivalía a 9,8 m/s2 sobre la superficie terrestre. La fuerza con la que un cuerpo era atraído hacia el centro de la Tierra se denominaba peso. Evidentemente, según los principios de la mecánica clásica un cuerpo en caída libre no es un sistema inercial, puesto que se mueve aceleradamente dentro del campo gravitatorio en que se encuentra.

Sin embargo, la teoría de la relatividad considera que los efectos gravitatorios no son creados por fuerza alguna, sino que encuentran su causa en la curvatura del espacio-tiempo generada por la presencia de materia. Por ello, un cuerpo en caída libre es un sistema (localmente) inercial, ya que no está sometido a ninguna fuerza (porque la gravedad tiene este carácter en relatividad general). Un observador situado en un sistema inercial (como una nave en órbita) no experimenta ninguna aceleración y es incapaz de discernir si está atravesando o no, un campo gravitatorio. Como consecuencia de ello, las leyes de la física se comportan como si no existiera curvatura gravitatoria alguna. De ahí que el principio de equivalencia también reciba el nombre de Invariancia Local de Lorenz: En los sistemas inerciales rigen los principios y axiomas de la relatividad especial.

El principio de equivalencia implica asimismo que los observadores situados en reposo sobre la superficie de la tierra no son sistemas inerciales (experimentan una aceleración de origen gravitatorio de unos 9,8 metros por segundo al cuadrado, es decir, "sienten su peso").



Ejemplos de sistemas inerciales según el Principio de Equivalencia

Sistema

¿Es inercial?
(Principio de Equivalencia)


¿Es inercial?
(Mecánica newtoniana)


Cuerpo en caída libre



No

Cuerpo en reposo sobre la superficie terrestre

No



Planeta orbitando alrededor del sol



No

Nave precipitándose hacia la tierra



No

Cohete despegando desde una base de lanzamiento

No

No

Aunque la mecánica clásica tiene en cuenta la aceleración medida por un observador en reposo respecto al campo gravitatorio (p.e. un astrónomo); el Principio de Equivalencia, contrariamente, toma en consideración la aceleración experimentada por un observador situado en el sistema en cuestión: cualquier cuerpo que se mueva sin restricciones por un campo gravitatorio puede ser considerado como un sistema inercial. Es el caso de los planetas que orbitan en torno del Sol y de los satélites que orbitan alrededor de los primeros: los habitantes de la Tierra no llegan a percibir si nos estamos acercando o alejando del Sol, ni si nos encontramos en el afelio o en el perihelio, a pesar de las enormes diferencias de la gravedad solar.

La gravedad se convierte, en virtud del Principio de Equivalencia, en una fuerza aparente, como la fuerza centrífuga y la fuerza de Coriolis: en estos dos últimos supuestos su aparición es debida a la elección de un marco de referencia acelerado (un observador situado en la superficie de una esfera en rotación). En el caso de la gravedad, únicamente percibimos la fuerza aparente gravitatoria cuando escogemos un sistema de referencia no inercial (en reposo sobre la superficie terrestre), pero no cuando nos situamos en otro que sí lo es (un cuerpo en caída libre).

Aunque el principio de equivalencia fue históricamente importante en el desarrollo de la teoría, no es un ingrediente necesario de una teoría de la gravedad, como prueba el hecho de que otras teorías métricas de la gravedad, como la teoría relativista de la gravitación prescindan del principio de equivalencia. Además conviene señalar que el principio de equivalencia no se cumple en presencia de campos electromagnéticos, por ejemplo una partícula cargada moviéndose a lo largo de una geodésica de un espacio-tiempo cualquiera en general emitirá radiación, a diferencia de una partícula cargada moviéndose a lo largo de una geodésica del espacio de Minkowsky. Ese y otros hechos sugieren que el principio de equivalencia a pesar de su equivalencia histórica no es parte esencial de una teoría relativista de la gravitación.

La curvatura del espacio-tiempo

La aceptación del principio de equivalencia por Albert Einstein le llevó a un descubrimiento ulterior: la contracción o curvatura del tiempo como consecuencia de la presencia de un campo gravitatorio, que quedó expresado en su artículo de 1911 "Sobre la influencia de la gravedad en la propagación de la luz".1http://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/gravitational_red-shifting.png/250px-gravitational_red-shifting.png

Supongamos que un fotón emitido por una estrella cercana se aproxima a la Tierra. En virtud de la ley de conservación del tetramomentum la energía conservada del fotón permanece invariante. Por otro lado, el principio de equivalencia implica que un observador situado en el fotón (que es un sistema inercial, es decir, se halla en caída libre) no experimenta ninguno de los efectos originados por el campo gravitatorio terrestre. De ello se deduce que la energía conservada del fotón no se altera como consecuencia de la acción de la gravedad, y tampoco lo hace la frecuencia de la luz, ya que, según la conocida fórmula de la física cuántica, la energía de un fotón es igual a su frecuencia v multiplicada por la constante de Planck hE = hν.
En la imagen se reproduce el corrimiento gravitacional hacia el rojo de un fotón que escapa del campo gravitatorio solar y se dirige hacia la Tierra. En este caso, la onda electromagnética pierde progresivamente energía y su frecuencia disminuye conforme aumenta la distancia al Sol.

Ahora bien, si las observaciones las realizara un astrónomo situado en la superficie de la Tierra, esto es, en reposo respecto su campo gravitatorio, los resultados serían muy diferentes: el astrónomo podría comprobar cómo el fotón, por efecto de su caída hacia la Tierra, va absorbiendo progresivamente energía potencial gravitatoria y, como consecuencia de esto último, su frecuencia se corre hacia el azul.2 Los fenómenos de absorción de energía por los fotones en caída libre y corrimiento hacia el azul se expresan matemáticamente mediante las siguientes ecuaciones:



\ e_{obs}=e_{con} e^{-\phi}

\ h \nu_{rec}=h \nu_{em} e^{-\phi}

\nu_{rec}=\nu_{em} e^{-\phi}\,

donde e_{obs}\, es la energía medida por un observador en reposo respecto al campo gravitatorio (en este caso un astrónomo), \ \phi el potencial gravitatorio de la región donde se encuentra éste, \ e_{con} la energía conservada del fotón, \nu_{em} la frecuencia de emisión, \nu_{rec} es la frecuencia percibida por el observador (y corrida hacia el azul) y \ h la constante de Planck.

Ahora bien, en el párrafo anterior hemos demostrado que la energía conservada del fotón permanece invariante. Por tanto, ¿cómo es posible que exista esta divergencia entre los resultados de la medición de la energía obtenidos por el astrónomo (e_{obs}) y la energía conservada del fotón (e_{con})? La única manera de resolver esta contradicción es considerando que el tiempo se ralentiza como consecuencia de la presencia de un campo gravitatorio. De este modo, la citada ecuación:

\ \nu_{rec}=\nu_{em} e^{-\phi}

puede escribirse de este modo:



\ \frac{\mbox{ciclos}}{\delta t_{obs}}= \frac{\mbox{ciclos}}{\delta t_{em}} e^{-\phi}

Es decir, la frecuencia es igual al número de ciclos que tienen lugar en un determinado período (generalmente, un segundo). Donde \delta t_{em} es el tiempo medido por un observador situado a una distancia infinita del cuerpo masivo (y por lo tanto no experimenta la atracción gravitatoria de éste), mientras que \delta t_{obs} es el tiempo medido por un observador bajo la influencia del campo gravitatorio y en reposo respecto a este (como, por ejemplo, una persona situada sobre la superficie terrestre). De ahí se deduce que cerca de un cuerpo masivo el tiempo se ralentiza, siguiendo estas reglas matemáticas:



\delta t_{em} = \delta t_{obs} e^{-\phi}\,

\delta t_{obs} = \delta t_{em} e^{\phi}\,

En una singularidad espacio-temporal (como las que existen en el interior de los agujeros negros), la densidad de masa-materia y el campo gravitatorio tienden al infinito, lo que provoca la congelación del tiempo y por lo tanto la eliminación de todo tipo de procesos dinámicos:http://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/l%c3%adneas_de_universo_curvas.png/250px-l%c3%adneas_de_universo_curvas.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/l%c3%adneas_de_universo_llanas.png/250px-l%c3%adneas_de_universo_llanas.png



\lim_{r\to 0} \delta t_{obs}= \delta t_{em} e^{-\infty} \to \lim_{r\to 0} \delta t_{obs}= 0
En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano.
Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas ("rectas"), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

La contracción del tiempo debido a la presencia de un campo gravitatorio fue confirmada experimentalmente en el año 1959 por el experimento Pound-Rebka-Snider, llevado a cabo en la universidad de Harvard. Se colocaron detectores electromagnéticos a una cierta altura y se procedió a emitir radiación desde el suelo. Todas las mediciones que se realizaron confirmaron que los fotones habían experimentado un corrimiento hacia el rojo durante su ascenso a través del campo gravitatorio terrestre.

Hoy en día, el fenómeno de la contracción del tiempo tiene cierta importancia en el marco del servicio localizador GPS, cuyas exigencias de exactitud requieren de una precisión extrema: Basta con que se produzca un retraso de 0.04 microsegundos en la señal para que se produzca un error de posicionamiento de unos 10 metros. De ahí que las ecuaciones de Einstein hayan de ser tenidas en cuenta al calcular la situación exacta de un determinado objeto sobre la superficie terrestre.

Desde un punto de vista teórico, el artículo de Einstein de 1911 tuvo una importancia aún mayor. Pues, la contracción del tiempo conllevaba también, en virtud de los principios de la relatividad especial, la contracción del espacio. De ahí que fuera inevitable a partir de este momento descartar la existencia de un espacio-tiempo llano, y fuera necesario asumir la curvatura de la variedad espacio-temporal como consecuencia de la presencia de masas.

En la relatividad general, fenómenos que la mecánica clásica atribuye a la acción de la fuerza de gravedad, tales como una caída libre, la órbita de un planeta o la trayectoria de una nave espacial, son interpretados como efectos geométricos del movimiento en un espacio-tiempo curvado. De hecho una partícula libre en un campo gravitatorio sigue líneas de curvatura mínima a través de este espacio tiempo-curvado.

Finalmente, podemos hacer referencia a la desviación de los rayos de la luz como consecuencia de la presencia de un cuerpo masivo, fenómeno que da lugar a efectos ópticos como las lentes gravitacionales o los anillos de Einstein.

Frente de onda desviado. Lente gravitacional. Experimento de Eddington.

  1   2   3   4


La base de datos está protegida por derechos de autor ©bazica.org 2016
enviar mensaje

    Página principal