Darpa acrónimo de la expresión en inglés Defense Advanced Research Projects A



Descargar 20.43 Kb.
Fecha de conversión20.02.2017
Tamaño20.43 Kb.
DARPA acrónimo de la expresión en inglés Defense Advanced Research Projects Agency (Agencia de Investigación de Proyectos Avanzados de Defensa) es una agencia del Departamento de Defensa de los Estados Unidos responsable del desarrollo de nuevas tecnologías para uso militar.
Packet radio o radiopaquete es un sistema de comunicación digital para las comunicaciones entre computadoras que emplea un sistema basado en las emisoras de radioaficionados. Consiste en el envio, a través de la radio, de Señales Digitales mediante en pequeños paquetes que luego son reensamblados en un mensaje completo en el destino final.
CSMA/CD, siglas que corresponden a Carrier Sense Multiple Access with Collision Detection (en español, "Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloha ranurado, pero ambas presentaban muy bajas prestaciones.

ALOHAnet (o simplemente ALOHA) fue un sistema de redes de ordenadores pionero desarrollado en la Universidad de Hawái. Fue desplegado por primera vez en 1970, y aunque la propia red ya no se usa, uno de los conceptos esenciales de esta red es la base para la cuasi-universal Ethernet.
Descripción

Uno de los primeros diseños de redes de ordenadores, la red ALOHA, fue creada en la Universidad de Hawái en 1970 bajo la dirección de Norman Abramson. Al igual que el grupo ARPANET, la red ALOHA se construyó con fondos de DARPA.

De modo similar a ARPANET, la red ALOHA se construyó para permitir a personas de diferentes localizaciones acceder a los principales sistemas informáticos.

Pero mientras ARPANET usaba líneas telefónicas arrendadas, ALOHA usaba packet radio, esto se debía a que los diferentes centros de investigación estaban repartidos en varias islas, por lo que se buscaba un sistema de transmisión de datos inalámbrico, como las ondas de radio.

La importancia de ALOHA se basa en que usaba un medio compartido para la transmisión. Esto reveló la necesidad de sistemas de gestión de acceso como CSMA/CD, usado por Ethernet. A diferencia de ARPANET donde cada nodo sólo podía comunicarse con otro nodo, en ALOHA todos usaban la misma frecuencia. Esto implicaba la necesidad de algún tipo de sistema para controlar quién podían emitir y en qué momento.
Antes de ALOHAnet, la mayoría de las comunicaciones entre computadoras tendían a utilizar rasgos similares. Los datos que iban a ser enviados se convertían en una señal analógica utilizando un mecanismo similar a un módem, que sería enviada sobre un método de conexión conocido, como podría ser una línea telefónica. La conexión era punto a punto, y normalmente se establecía de modo manual.
Por el contrario, ALOHAnet era una auténtica red. Todas las computadoras conectadas a ALOHAnet podían enviar datos en cualquier momento sin necesidad de intervención por parte de un operador, y se podía ver envuelto cualquier número de computadoras. Como la transmisión se realizaba por radio, no había costes fijos, por lo que el canal se dejaba abierto y se podía utilizar en cualquier momento.

Usar una señal compartida de esta manera conlleva un importante problema: si dos sistemas en la red (conocidos como nodos) enviaban al mismo tiempo, ambas señales se estropearían. Era necesario algún tipo de sistema para evitar este problema. Existen varios modos de hacerlo.

Uno sería utilizar una frecuencia de radio diferente para cada nodo, sistema conocido como multiplexación en frecuencia. Comoquiera que este sistema requiere que cada nodo que se añada sea capaz de sintonizarse con el resto de máquinas, pronto se necesitarían cientos de frecuencias distintas y radios capaces de escuchar este número de frecuencias al mismo tiempo, lo que sería demasiado costoso.

Otra solución es tener ranuras de tiempo asignadas a cada nodo para enviar, lo que se conoce como multiplexación por división de tiempo. Este sistema es más fácil de implementar, dado que los nodos pueden seguir compartiendo una única frecuencia de radio. El inconveniente es que si un nodo en particular no tiene nada que enviar, su ranura estaría siendo desperdiciada. Esto nos lleva a situaciones en las que el tiempo disponible está vacío en gran parte y un nodo con datos que enviar lo tendría que hacer muy despacio por si acaso alguno de los otros 100 nodos decidiera enviar algo.

En cambio, ALOHAnet utilizó una nueva solución al problema, que más tarde se convertiría en el estándar, el Acceso múltiple por detección de portadora. En este sistema no hay multiplexación fija en absoluto. En su lugar, cada nodo escucha para saber si alguien está utilizando el canal, y si no escucha a nadie comienza a emitir.
Protocolo

El protocolo ALOHA es un protocolo del nivel de enlace de datos para redes de área local con topología de difusión.

La primera versión del protocolo era básica:


  • Si tienes datos que enviar, envíalos.

  • Si el mensaje colisiona con otra transmisión, intenta reenviarlos más tarde.

Muchos han estudiado el protocolo. El quid de la cuestión está en el concepto de más tarde. ¿Qué es más tarde? Determinar un buen esquema de parada también determina gran parte de la eficiencia total del protocolo, y cuan determinístico será su comportamiento (cómo de predecibles serán los cambios del protocolo).

El protocolo ALOHA es un protocolo del nivel de enlace de datos para redes de área local con topología de difusión.


La primera versión del protocolo era básica:
Si tienes datos que enviar, envíalos.
Si el mensaje colisiona con otra transmisión, intenta reenviarlos más tarde.

Aloha ranurado

Para mejorar las prestaciones de Aloha se definió Aloha ranurado (slotted) (Roberts 1972), con la única diferencia de que las estaciones sólo pueden transmitir en unos determinados instantes de tiempo o slots. De esta manera se disminuye el periodo vulnerable a t. Este sincronismo hace que cuando un terminal quiera transmitir debe esperar al inicio del nuevo periodo para hacerlo. Con Aloha ranurado, un reloj centralizado envía pequeños paquetes con la señal de reloj a las estaciones periféricas. Las estaciones sólo tienen permitido enviar sus paquetes inmediatamente después de recibir la señal de reloj. Si hay una sola estación con intención de emitir un paquete, esto garantiza que nunca habrá una colisión para ese paquete. Por otra parte, si hay dos estaciones con paquetes para enviar, este algoritmo garantiza que habrá una colisión y se malgastará toda la ranura de tiempo hasta la siguiente señal de reloj. Con algunas matemáticas es posible demostrar que este protocolo sí que mejora la utilización total del canal, reduciendo la probabilidad de colisiones a la mitad.



Ventajas

  • Permitir a cualquier nodo usar la capacidad total de la red si ningún otro nodo la está usando.

  • Además, no necesita inicialización, cualquiera puede conectarse y comenzar a emitir sin establecer información adicional como la frecuencia o la ranura temporal a usar.

Desventajas

  • Si la red está saturada, el número de colisiones puede crecer drásticamente hasta el punto de que todos los paquetes colisionen. Para ALOHAnet el uso máximo del canal estaba en torno al 18%, y cualquier intento de aumentar la capacidad de la red simplemente incrementaría el número de colisiones, y el rendimiento total de envío de datos se reduciría, fenómeno conocido como colapso por congestión.











La base de datos está protegida por derechos de autor ©bazica.org 2016
enviar mensaje

    Página principal