Estructuras de concreto



Descargar 0.83 Mb.
Página1/32
Fecha de conversión05.09.2018
Tamaño0.83 Mb.
  1   2   3   4   5   6   7   8   9   ...   32



NORMAS TÉCNICAS COMPLEMENTARIAS
PARA DISEÑO Y CONSTRUCCIÓN DE
ESTRUCTURAS DE CONCRETO


ÍNDICE






  • Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto




  • NOTACIÓN


A área de concreto a tensión dividida entre el número de barras; también, área de la sección definida por el plano crítico de cortante por fricción; también, área de la sección transversal comprendida entre la cara a tensión por flexión de la losa postensada y el centro de gravedad de la sección completa, mm² (cm²)

A1 área de contacto en la revisión por aplastamiento, mm² (cm²)

A2 área de la figura de mayor tamaño, semejante al área de contacto y concéntrica con ella, que puede inscribirse en la superficie que recibe la carga, mm² (cm²)

Ac área transversal del núcleo, hasta la orilla exterior del refuerzo transversal, mm² (cm²)

Acm área bruta de la sección de concreto comprendida por el espesor del muro y la longitud de la sección en la dirección de la fuerza cortante de diseño, mm² (cm²)

Acp área de la sección transversal del elemento, incluida dentro del perímetro del elemento de concreto, mm² (cm²)

Acr área de la sección crítica para transmitir cortante entre columnas y losas o zapatas, mm² (cm²)

Af área del acero de refuerzo prinicipal necesario para resistir el momento flexionante en ménsulas, mm² (cm²)

Ag área bruta de la sección transversal, mm² (cm²)

Ah área de los estribos complementarios horizontales en ménsulas, mm² (cm²)

An área del acero de refuerzo principal necesario para resistir la fuerza de tensión horizontal Phu en ménsulas, mm² (cm²)

Ao área bruta encerrada por el flujo de cortante en elementos a torsión, mm² (cm²)

Aoh área comprendida por el perímetro ph, mm² (cm²)

As área de refuerzo longitudinal en tensión en acero de elementos a flexión; también, área total del refuerzo longitudinal en columnas; o también, área de las barras principales en ménsulas, mm² (cm²)

As área de acero de refuerzo longitudinal en compresión en elementos a flexión, mm² (cm²)

As,mín área mínima de refuerzo longitudinal de secciones rectangulares, mm² (cm²)

Asd área total del acero de refuerzo longitudinal de cada elemento diagonal en vigas diafragma que unen muros sujetos a fuerzas horizontales en un plano, también llamadas vigas de acoplamiento, mm² (cm²)

Ash área del acero de refuerzo transversal por confinamiento en elementos a flexocompresión, mm² (cm²)

Asm área del acero de refuerzo de integridad estructural en losas planas postensadas, mm² (cm²)

Asp área del acero de refuerzo que interviene en el cálculo de la resistencia a flexión de vigas T e I sin acero de compresión; también, área del acero de presfuerzo en la zona de tensión, mm² (cm²)

Ast área del acero de refuerzo longitudinal requerido por torsión, mm² (cm²)

At área transversal de una rama de estribo que resiste torsión, colocado a una separación s, mm² (cm²)

Atr área total de las secciones rectas de todo el refuerzo transversal comprendido en la separación s, y que cruza el plano potencial de agrietamiento entre las barras que se anclan, mm² (cm²)

Av área de todas las ramas de refuerzo por tensión diagonal comprendido en una distancia s; también, en vigas diafragma, área de acero de refuerzo vertical comprendida en una distancia s, mm² (cm²)

Avf área del acero de refuerzo por cortante por fricción, mm² (cm²)

Avh área de acero de refuerzo horizontal comprendida en una distancia sh en vigas diafragma, mm² (cm²)

Avm área de acero de refuerzo paralelo a la fuerza cortante de diseño comprendida en una distancia sm en muros y segmentos de muro, mm² (cm²)

Avn área de acero de refuerzo perpendicular a la fuerza cortante de diseño comprendida en una distancia sn en muros y segmentos de muro, mm² (cm²)

a profundidad del bloque de esfuerzos a compresión en el concreto; también, en ménsulas, distancia de la carga al paño donde arranca la ménsula, mm (cm)

a1, a2 respectivamente, claros corto y largo de un tablero de una losa, o lados corto y largo de una zapata, m

as área transversal de una barra, mm² (cm²)

as1 área transversal del refuerzo por cambios volumétricos, por unidad de ancho de la pieza, mm²/mm (cm²/cm)

Be ancho de losa usado para calcular la rigidez a flexión de vigas equivalentes, mm (cm)

Bt ancho total de la losa entre las líneas medias de los tableros adyacentes al eje de columnas considerado, mm (cm)

b ancho de una sección rectangular, o ancho del patín a compresión en vigas T, I o L, o ancho de una viga ficticia para resistir fuerza cortante en losas o zapatas, mm (cm)

b ancho del alma de una sección T, I o L, mm (cm)

bc dimensión del núcleo de un elemento a flexo­compresión, normal al refuerzo de área Ash, mm (cm)

be ancho efectivo para resistir fuerza cortante de la unión viga–columna, mm (cm)

bo perímetro de la sección crítica por tensión diagonal alrededor de cargas concentradas a reacciones en losas y zapatas, mm (cm)

bv ancho del área de contacto en vigas de sección compuesta, mm (cm)

Cf coeficiente de deformación axial diferida final

Cm factor definido en la sección 1.4.2.2 y que toma en cuenta la forma del diagrama de momentos flexionantes

c separación o recubrimiento; también, profundidad del eje neutro medida desde la fibra extrema en compresión; o también, en muros, la mayor profundidad del eje neutro calculada para la carga axial de diseño y el momento resistente (igual al momento último resistente con factor de resistencia unitario) y consistente con el desplazamiento lateral de diseño, du, mm (cm)

c1 dimensión horizontal del capitel en su unión con el ábaco, paralela a la dirección de análisis; también, dimensión paralela al momento transmitido en losas planas, mm (cm)

c2 dimensión horizontal del capitel en su unión con el ábaco, normal a la dirección de análisis; también, dimensión normal al momento transmitido en losas planas, mm (cm)

D diámetro de una columna, mm (cm)

Dp diámetro de un pilote en la base de la zapata, mm (cm)

d peralte efectivo en la dirección de flexión; es decir, distancia entre el centroide del acero de tensión y la fibra extrema de compresión, mm (cm)

d distancia entre el centroide del acero de compresión y la fibra extrema a compresión, mm (cm)

db diámetro nominal de una barra, mm (cm)

dc recubrimiento de concreto medido desde la fibra extrema en tensión al centro de la barra más próxima a ella, mm (cm)

dp distancia de la fibra extrema en compresión al centroide de los tendones de presfuerzo, mm (cm)

ds distancia entre la fibra extrema en compresión y el centroide del acero de refuerzo longitudinal ordinario a tensión, mm (cm)

Ec módulo de la elasticidad del concreto de peso normal, MPa (kg/cm²)

EL módulo de elasticidad del concreto ligero, MPa (kg/cm²)

Es módulo de elasticidad del acero, MPa (kg/cm²)

e base de los logaritmos naturales

ex excentricidad en la dirección X de la fuerza normal en elementos a flexocompresión, mm (cm)

ey excentricidad en la dirección Y de la fuerza normal en elementos a flexocompresión, mm (cm)

Fab factor de amplificación de momentos flexionantes en elementos a flexocompresión con extremos restrin­gidos lateralmente

Fas factor de amplificación de momentos flexionantes en elementos a flexocompresión con extremos no restringidos lateralmente

FR factor de resistencia

fb esfuerzo de aplastamiento permisible, MPa (kg/cm²)

fc resistencia especificada del concreto a compresión, MPa (kg/cm²)

fc magnitud del bloque equivalente de esfuerzos del concreto a compresión, MPa (kg/cm²)

resistencia media a compresión del concreto, MPa (kg/cm²)



fc* resistencia nominal del concreto a compresión, MPa (kg/cm²)

fci resistencia a compresión del concreto a la edad en que ocurre la transferencia, MPa (kg/cm²)

fcp esfuerzo de compresión efectivo debido al presfuerzo, después de todas las pérdidas, en el centroide de la sección transversal o en la unión del alma y el patín, MPa (kg/cm²)

resistencia media a tensión por flexión del concreto o módulo de rotura, MPa (kg/cm²)



ff* resistencia nominal del concreto a flexión, MPa (kg/cm²)

fs esfuerzo en el acero en condiciones de servicio, MPa (kg/cm²)

fse esfuerzo en el acero de presfuerzo en condiciones de servicio después de pérdidas, MPa (kg/cm²)

fsp esfuerzo en el acero de presfuerzo cuando se alcanza la resistencia a flexión del elemento, MPa (kg/cm²)

fsr esfuerzo resistente del acero de presfuerzo, MPa (kg/cm²)

resistencia media del concreto a tensión, MPa (kg/cm²)



ft* resistencia nominal del concreto a tensión, MPa (kg/cm²)

fy esfuerzo especificado de fluencia del acero de refuerzo, MPa (kg/cm²)

fyh esfuerzo especificado de fluencia del acero de refuerzo transversal o, en vigas diafragma, del acero de refuerzo horizontal, MPa (kg/cm²)

fyp esfuerzo convencional de fluencia del acero de presfuerzo, MPa (kg/cm²)

fyt esfuerzo especificado de fluencia del acero de refuerzo transversal necesario para resistir torsión, MPa (kg/cm²)

fyv esfuerzo especificado de fluencia del acero de refuerzo transversal necesario para resistir fuerza cortante, MPa (kg/cm²)

H longitud libre de un miembro a flexocompresión, o altura del segmento o tablero del muro en consideración, en ambos casos perpendicular a la dirección de la fuerza cortante, mm (cm)

H longitud efectiva de pandeo de un miembro a flexocompresión, mm (cm)

Hcr altura crítica de un muro, mm (cm)

Hm altura total de un muro, mm (cm)

h peralte total de un elemento, o dimensión transversal de un miembro paralela a la flexión o a la fuerza cortante; también, altura de entrepiso eje a eje, mm (cm)

h1 distancia entre el eje neutro y el centroide del refuerzo principal de tensión, mm (cm)

h2 distancia entre el eje neutro y la fibra más esforzada a tensión, mm (cm)

hs, hp peralte de viga secundaria y principal, respec­tivamente, mm (cm)

I1, I2, I3 momentos de inercia para calcular deflexiones inmediatas, mm4 (cm4)

Iag momento de inercia de la sección transformada agrietada, mm4 (cm4)

Ie momento de inercia efectivo, mm4 (cm4)

Ig momento de inercia centroidal de la sección bruta de concreto de un miembro, mm4 (cm4)

Ip índice de presfuerzo

Jc parámetro para el cálculo del esfuerzo cortante actuante debido a transferencia de momento entre columnas y losas o zapatas, mm4 (cm4)

K coeficiente de fricción por desviación accidental por metro de tendón, 1/m

Ktr índice de refuerzo transversal, mm (cm)

k factor de longitud efectiva de pandeo de un miembro a flexocompresión; también, coeficiente para determinar el peralte mínimo en losas planas

L claro de un elemento; también, longitud de un muro o de un tablero de muro en la dirección de la fuerza cortante de diseño; o también, en concreto presforzado, longitud del tendón desde el extremo donde se une al gato hasta el punto x, mm (cm)

Ld longitud de desarrollo, mm (cm)

Ldb longitud básica de desarrollo, mm (cm)

l1, l2 claros centro a centro en cada dirección principal para determinar el refuerzo de integridad estructural en losas planas postensadas, m

M momento flexionante que actúa en una sección, N-mm (kg-cm)

M1 menor momento flexionante en un extremo de un miembro a flexocompresión; también, en marcos dúctiles con articulaciones alejadas de las columnas, demanda de momento flexionante en la cara de la columna (sección 1) debida a la formación de la articulación plástica en la sección 2, N-mm (kg-cm)

M2 mayor momento flexionante en un extremo de un miembro a flexocompresión; también, en marcos dúctiles con articulaciones plásticas alejadas de la columna, momentos flexionantes resistentes asociados a la formación de la articulación plástica en la sección 2, N-mm (kg-cm)

M1b, M2b momentos flexionantes multiplicados por el factor de carga, en los extremos respectivos donde actúan M1 y M2, producidos por las cargas que no causan un desplazamiento lateral apreciable, calculado con un análisis elástico de primer orden, N-mm
(kg-cm)

M1s, M2s momentos flexionantes multiplicados por el factor de carga, en los extremos respectivos donde actúan M1 y M2, producidos por las cargas que causan un desplazamiento lateral apreciable, calculado con un análisis elástico de primer orden, N-mm (kg-cm)

Ma1, Ma2 en marcos dúctiles con articulaciones plásticas alejadas de la columna, momentos flexionantes de diseño en las secciones 1 y 2, respectivamente, obtenidos del análisis, N-mm (kg-cm)

Mag momento de agrietamiento, N-mm (kg-cm)

Mc momento flexionante amplificado resultado de la revisión por esbeltez, N-mm (kg-cm)

Me momento flexionante resistente de la columna al paño del nudo de marcos dúctiles, calculado con factor de resistencia igual a uno, N-mm (kg-cm)

Mg momento flexionante resistente de la viga al paño del nudo de marcos dúctiles, calculado con factor de resistencia igual a uno y esfuerzo de fluencia igual a 1.25fy, N-mm (kg-cm)

Mmáx momento flexionante máximo correspondiente al nivel de carga para el cual se estima la deflexión,
N-mm (kg-cm)

MR momento flexionante resistente de diseño, N-mm
(kg-cm)

MRp momento flexionante resistente suministrado por el acero presforzado, N-mm (kg-cm)

MRr momento flexionante resistente suministrado por el acero ordinario, N-mm (kg-cm)

MRx momento flexionante resistente de diseño alrededor del eje X, N-mm (kg-cm)

MRy momento flexionante resistente de diseño alrededor del eje Y, N-mm (kg-cm)

Mu momento flexionante de diseño, N-mm (kg-cm)

Mux momento flexionante de diseño alrededor del eje X, N-mm (kg-cm)

Muy momento flexionante de diseño alrededor del eje Y, N-mm (kg-cm)

m relación a1/a2

Nc fuerza a tensión en el concreto debida a cargas muerta y viva de servicio, N (kg)

Nu fuerza de diseño de compresión normal al plano crítico en la revisión por fuerza cortante por fricción, N (kg)

n número de barras sobre el plano potencial de agrietamiento

P carga axial que actúa en una sección; también, carga concentrada en losas, N (kg)

P0 valor de la fuerza que es necesario aplicar en el gato para producir una tensión determinada Px en el tendón postensado, N (kg)

Pc carga axial crítica, N (kg)

Phu fuerza de tensión horizontal de diseño en ménsulas, N (kg)

PR carga normal resistente de diseño, N (kg)

PR0 carga axial resistente de diseño, N (kg)

PRx carga normal resistente de diseño aplicada con una excentricidad ex, N (kg)

PRy carga normal resistente de diseño aplicada con una excentricidad ey, N (kg)

Pu fuerza axial de diseño, N (kg)

Pvu fuerza vertical de diseño en ménsulas, N (kg)

Px tensión en el tendón postensado en el punto x, N (kg)

p cuantía del acero de refuerzo longitudinal a tensión:

p = (en vigas);

p = (en muros); y

p = (en columnas).

p’ cuantía del acero de refuerzo longitudinal a compresión:

p’ = (en elementos a flexión).

pcp perímetro exterior de la sección transversal de concreto del elemento, mm (cm)

ph perímetro, medido en el eje, del estribo de refuerzo por torsión, mm (cm)

pm cuantía del refuerzo paralelo a la dirección de la fuerza cortante de diseño distribuido en el área bruta de la sección transversal normal a dicho refuerzo

pn cuantía de refuerzo perpendicular a la dirección de la fuerza cortante de diseño distribuido en el área bruta de la sección transversal normal a dicho refuerzo

pp cuantía de acero de presfuerzo (Asp/bdp)

ps cuantía volumétrica de refuerzo helicoidal o de estribos circulares en columnas

Q factor de comportamiento sísmico

q’ =

Rb distancia del centro de la carga al borde más próximo a ella, mm (cm)

r radio de giro de una sección; también, radio del círculo de igual área a la de aplicación de la carga concentrada, mm (cm)

SLh separación libre horizontal entre tendones y ductos, mm (cm)

SLv separación libre vertical entre tendones y ductos, mm (cm)

s separación del refuerzo transversal, mm (cm)

sh separación del acero de refuerzo horizontal en vigas diafragma, mm (cm)

sm separación del refuerzo perpendicular a la fuerza cortante de diseño, mm (cm)

sn separación del refuerzo paralelo a la fuerza cortante de diseño, mm (cm)

T momento torsionante que actúa en una sección, N-mm (kg-cm)

TR0 momento torsionante resistente de diseño de un miembro sin refuerzo por torsión, N-mm (kg-cm)

Tu momento torsionante de diseño, N-mm (kg-cm)

Tuh momento torsionante de diseño en la condición hiperestática, N-mm (kg-cm)

Tui momento torsionante de diseño en la condición isostática, N-mm (kg-cm)

t espesor del patín en secciones I o L, o espesor de muros, mm (cm)

u relación entre el máximo momento flexionante de diseño por carga muerta y carga viva sostenida, y el máximo momento flexionante de diseño total asociados a la misma combinación de cargas

V fuerza cortante que actúa en una sección, N (kg)

VcR fuerza cortante de diseño que toma el concreto, N (kg)

VsR fuerza cortante se diseño que toma el acero de refuerzo transversal, N (kg)

Vu fuerza cortante de diseño, N (kg)

vn esfuerzo cortante horizontal entre los elementos que forman una viga compuesta, MPa (kg/cm²)

vu esfuerzo cortante de diseño, MPa (kg/cm²)

Wu suma de las cargas de diseño muertas y vivas, multiplicadas por el factor de carga correspondiente, acumuladas desde el extremo superior del edificio hasta el entrepiso considerado, N (kg)

w carga uniformemente distribuida, kN/m² (kg/m²)

wu carga de diseño de la losa postensada, kN/m² (kg/m²)

x punto en el cual se valúan la tensión y pérdidas por postensado; también, dimensión en la dirección en que se considera la tolerancia, mm (cm)

x1 dimensión mínima del miembro medida perpendicular­mente al refuerzo por cambios volumétricos, mm (cm)

y longitud de ménsulas restando la tolerancia de separación, mm (cm)

z brazo del par interno en vigas diafragma y muros, mm (cm)

a fracción del momento flexionante que se transmite por excentricidad de la fuerza cortante en losas planas o zapatas

b1 factor definido en el inciso 2.1.e que especifica la profundidad del bloque equivalente de esfuerzos a compresión, como una fracción de la profundidad del eje neutro, c

g relación del lado corto al lado largo del área donde actúa la carga o reacción

D desplazamiento de entrepiso producido por la fuerza cortante de entrepiso V, mm (cm)

df deformación axial final, mm (cm)

di deformación axial inmediata, mm (cm)

ecf contracción por secado final

esp deformación unitaria del acero de presfuerzo cuando se alcanza el momento flexionante resistente de la sección

eyp deformación unitaria convencional de fluencia del acero de presfuerzo

h cambio angular total en el perfil del tendón desde el extremo donde actúa el gato hasta el punto x, radianes

q ángulo que el acero de refuerzo transversal por tensión diagonal forma con el eje de la pieza; también, ángulo con respecto al eje de la viga diafragma que forma el elemento de refuerzo diagonal, grados

l índice de estabilidad

m coeficiente de fricción para diseño de cortante por fricción; también, coeficiente de fricción por curvatura en concreto presforzado

j ángulo, con respecto al eje de la pieza, que forman las diagonales de compresión que se desarrollan en el concreto para resistir tensión según la teoría de la analogía de la armadura espacial, grados

YA, YB cociente de S(I/L) de las columnas, entre S(I/L) de los miembros de flexión que llegan al extremo A o B de una columna, en el plano considerado

  1   2   3   4   5   6   7   8   9   ...   32


La base de datos está protegida por derechos de autor ©bazica.org 2016
enviar mensaje

    Página principal