Foundations of finances atlantic international university honolulu, haw



Descargar 0.53 Mb.
Página7/8
Fecha de conversión14.01.2019
Tamaño0.53 Mb.
1   2   3   4   5   6   7   8

Rentabilidad

Diarias

Ocasionales

Administrar el crédito. Control del inventario. Recepción y desembolso de fondos



Emisión de acciones. Emisión de bonos. Presupuesto de capital. Decisiones de dividendos

META:

Maximizar la riqueza de los accionistas


Riesgo



Figura 4.1: Funciones del administrador financiero de acuerdo Hirt y Block

4.2 Lo relativo de la valuación financiera.

En el ambiente de las finanzas corporativas el término valuación de activos financieros (bonos, acciones, depósitos bancarios, etc.) y la valuación de una empresa se refiere a la asignación o fijación de precio para fines de compra y venta.

La palabra valuación es una palabra cuyo uso es relativo, por lo tanto es necesario establecer su significado para los fines de las valuaciones financieras. Se trata de asignar valores a activos. Hitchner (2011) en su obra Financial Valuation, + website: applications and models aborda el tema de la valuación financiera de modo amplio y aclara que se deben establecer premisas claras para la utilización de dicho término en vista de la amplitud y lo relativo de su significado. La obra citada enfoca la valuación financiera, pero antes estable dos premisas: valor de cambio y el valor del titular o poseedor. Estas dos premisas afectan el estándar de valor. La premisa escogida estable el "¿el valor para quién?", dice el autor.


  • Valor en Cambio (Value in Exchange), de acuerdo a Hitchner (2011 p. 30), es el valor de asumir los intereses comerciales o de negocios en el cambio de manos en una venta real o hipotética. El comprador cambia el interés por dinero efectivo o equivalente de efectivo. En consecuencia los niveles de descuento de los accionistas considerados los de falta de control y los de falta de comercialización son considerados para calcular el valor de la propiedad de los intercambiadores. El valor justo de mercado y, en cierta medida la norma de la media razonable, tal como se aplica al accionista disidente, la opresión de los accionistas, y los asuntos de información financiera, generalmente caen bajo la premisa de cambio.

  • Valor para el titular (Value to the holder). La premisa de valor de titular representa el valor de una propiedad que no está siendo vendida pero que, en cambio, está siendo mantenida en sur forma presente por su propietario actual. La propiedad no tiene que ser necesariamente valuada para comercialización. Otro aspecto a menudo pasado por alto por la premisa del titular es que el resultado puede ser más o menos que el valor de cambio. El estándar de valuación de inversiones cae bajo la premisa del valor del titular, al igual que, en cierto caso, el valor justo.

Estas dos premisas representan para Hitchner (2011) las bases teóricas de cada estándar de valuación. En otras palabras, ellas representan el marco bajo el cual siguen los otros supuestos.


Una de las funciones que distinguen las finanzas de la contabilidad y la economía es el concepto de valuación. El mundo de las finanzas es la que da respuestas a preguntas y problemas relativos a valuación financiera como los que presentan a continuación:



  1. ¿Cuál es el valor actual de un bono perpetuo con valor par de $1,000 para un inversionista que exige una tasa de rendimiento del 12%? El bono perpetuo paga interés a una tasa de 8% anual.




  1. ¿Cuál es el valor de una acción preferente acumulativa y perpetua con un valor de $5, para un inversionista que exige una tasa de rendimiento anual del 10% sobre este valor?


4.2.1 valuación y tasas de rendimiento de activos financieros

Los activos financieros, por lo general son valuados por medio del valor presente de de sus flujos futuros de efectivo. Los accionistas de las corporaciones valúan sus acciones utilizando varios factores, entre ellos el valor de dinero a través de tiempo, se debe reconocer que existe relación entre el valor de dinero en el tiempo, rendimiento requerido, costo de financiamiento y decisiones de inversión.


4.2.2 ¿Qué es un activo financiero?
Son activos financieros son activos intangibles que se poseen y que tiene un valor de cambio, como los bonos o instrumentos de deuda, las acciones preferentes y comunes, las cuentas remuneradas, la participación en fondos de inversión, contratos a futuro, derechos, y otros.
4.2.3. ¿En qué se basa la valuación de un activo financiero?

La valuación de los activos financieros involucra el valor presente de su flujo de fondos esperado descontado a una tasa de rendimiento esperada por inversionistas. Hirt (2080) asegura que la valuación de un activo financiero se basa en el valor presente de sus flujos futuros de efectivo


Activo financiero



Se valúa por medio de:



La determinación del valor presente de los pagos de intereses esperados incluyendo el pago del principal al vencimiento. Se utiliza como de tasa descuento la tasa de rendimiento requerida por el inversionista.


Bonos





La división del pago constante anual de dividendo esperado entre la tasa de rendimiento requerida del inversionista.


Acciones preferentes


  1. Si no existe tasa de crecimiento consta en dividendos se le asigna precio o valor por medio del cálculo del valor presente de la corriente esperada de los dividendos futuros, utilizando como tasa de descuento la requerida por el inversionista.




  1. Si existe tasa de crecimiento constante se le asigna precio o valor dividiendo el dividendo espera del primer periodo ente la diferencia entre la tasa de rendimiento requerida por el inversionista y la tasa de crecimiento constante.


Acciones comunes

Figura 4.5.2 Valuación de los activos financieros más comunes




4.3 Problemas resueltos de valuación de activos financieros


  1. Valuación de bonos (Problema 1):

  1. ¿Cuál es valor de un bono de $10,000 emitido con un rendimiento del 10% anual a 20 años? El valor para o estipulado del bono es de $10,000.


Solución:
El precio de un bono se encuentra aplicando el siguiente modelo:


n



I

P

P = ∑


b

t

+

t

n

(1+ Y )

n

(4-1)


t=1

(1 + Y )

donde:


P
b
= Precio del bono

I
t


= Interés pagado en cada periodo de tiempo

P
n


= Pago del principal al vencimiento

t = Un periodo en el tiempo de duración del bono

n = Número periodos totales de duración del bono

Y = Tasa de rendimiento requerida por el inversionista.


Al sustituir los datos del problema en la fórmula (4-1) notamos que es necesario calcular el valor presente de del flujo de fondos de $1,000 que durante 20 años se va a recibir, descontados a la tasa de 10%, la cual es la tasa de rendimiento requerido por los inversionistas. Luego es necesario calcular el valor presente de los $10,000 del principal que se recibirán al final de los 20 años. El planteamiento es el siguiente:


$1,000

$10,000

20

+




P

=

(1+ 10%)


(1+10%)

20

t=1

t

b


Valor presente de los pagos de los intereses:
El flujo de pago de interés del bono durante los 20 años se muestra en la tabla 4-2 de la siguiente página. Este cálculo puede ser simplificado utilizando una tabla de valor presente de una anualidad. Los $1,000 que se recibirán de interés durante 20 años tienen un valor presente de 8.513,56 (ocho mil quinientos trece con cincuenta y seis centavos).
Valor presente del pago del principal:

Este valor único a recibir de $10,000 dentro 20 años puede ser calculado con una tabla financiera o se puede hacer de la siguiente manera:



$10,000


(1+ 10%)


Tabla 4-1 Cálculo del valor presente de los intereses del bono en Hoja de cálculo Excell.






20




=

$10,000

6.72749995



20

=

1,486.44

$






 Año

Interés

anual

Cálculo factor descuento

Factor descuento




Valor presente de interés




1

1.000

(1+10%)^1

1,1

909,09

2

1.000

(1+10%)^2

1,21

826,45

3

1.000

(1+10%)^3

1,331

751,31

4

1.000

(1+10%)^4

1,4641

683,01

5

1.000

(1+10%)^5

1,61051

620,92

6

1.000

(1+10%)^6

1,771561

564,47

7

1.000

(1+10%)^7

1,9487171

513,16

8

1.000

(1+10%)^8

2,14358881

466,51

9

1.000

(1+10%)^9

2,357947691

424,10

10

1.000

(1+10%)^10

2,59374246

385,54

11

1.000

(1+10%)^11

2,853116706

350,49

12

1.000

(1+10%)^12

3,138428377

318,63

13

1.000

(1+10%)^13

3,452271214

289,66

14

1.000

(1+10%)^14

3,797498336

263,33

15

1.000

(1+10%)^15

4,177248169

239,39

16

1.000

(1+10%)^16

4,594972986

217,63

17

1.000

(1+10%)^17

5,054470285

197,84

18

1.000

(1+10%)^18

5,559917313

179,86

19

1.000

(1+10%)^19

6,115909045

163,51

20

1.000

(1+10%)^20

6,727499949

148,64

Totales

20.000

Valor presente intereses…

8.513,56

El precio actual del bono, basado en el valor presente de los pagos de los intereses y el valor presente del pago del principal al vencimiento es de:


Valor presente de los pagos de intereses…………$8,513.56

Valor presente del pago del principal……………… 1,486.44

Precio del bono………………………… $10,000.00
En este caso el valor par del bono, de $10,000, se igual al precio que el inversionista está dispuesto a pagar. Esto es así porque la tasa de interés que paga del bono es igual a la tasa de rendimiento requerida por el inversionista, 10%. Esto significa que la tasa de interés que paga el bono es igual a tasa de rendimiento al vencimiento son iguales, lo que hace el bono se esté negociando al valor par.
b) Valuación de bonos (Problema 2):

Una compañía tiene bonos con valor par de $2,000 en circulación a una tasa de interés del 9%. Los bonos vencerán dentro 15 años. Calcule el precio actual de los bonos si el rendimiento al vencimiento (rendimiento requerido por los inversionistas) es:




  1. 6%

  2. 8%

  3. 12

Solución (a):

Valor presente de los intereses descontados una tasa de rendimiento al vencimiento (tasa de rendimiento requerida por el inversionista) de 6%:
$2,000 X 9% = $180

$180 X 9.712 = $1,748.16

"Se ha simplificado el cálculo mediante la utilización de una tabla financiera de valor presente de una anualidad para encontrar el factor de descuento 9.712 el cual corresponde a 15 periodos a una tasa de interés de 6%."
Valor presente del principal de los $2,000 a recibir al final de los 15 años descontados a una tasa de rendimiento al vencimiento (tasa de rendimiento requerida por los inversionistas) del 6%:
$2,000 X 0.417 = $834
"Se ha simplificado los cálculo se ha utilizado una tabla financiera de valor presente de $1 para encontrar el factor de descuento 0.417 el cual corresponde a 15 periodos a una tasa de interés del 6%".

Precio actual de los bonos:

Valor presente del pago de los intereses………$1,748.16

Valor presente del pago del principal…………… 834.00

Precio de los bonos………………………….$2,582.16


Solución (b):

Valor presente de los intereses a recibir con tasa de rendimiento al vencimiento (rendimiento requerido por del inversionista) del 8%:
$2,000 X 9% = $180
$180 X 8.559 = $1,540.62
"Se ha simplificado el cálculo mediante la utilización de una tabla financiera de valor presente de una anualidad para encontrar el factor de descuento 8.559 el cual corresponde a 15 periodos a una tasa de interés de 8%."
Valor presente del principal de los $2,000 a recibir al final de los 15 años descontados a una tasa de rendimiento requerida por los inversionistas (rendimiento al vencimiento) del 8%:
$2,000 X 0.315 = $630

"Se ha simplificado el cálculo mediante la utilización de una tabla financiera de valor presente de $1 para encontrar el factor de descuento 0.315 el cual corresponde a 15 periodos a una tasa de interés de 8%."


Precio actual de los bonos:
Valor presente del pago de los intereses………$1,540.62

Valor presente del pago del principal…… 630.00

Precio de los bonos…………………$ 1,999.64

Solución (c):

Valor presente de los intereses a recibir descontados a una tasa de rendimiento requerida por el inversionista (tasa de descuento al vencimiento) del 12%:
$2,000 X 9% = $180
$180 X 6.811 = $1,225.98
"Se ha simplificado el cálculo mediante la utilización de una tabla financiera de valor presente de una anualidad para encontrar el factor de descuento 6.811 el cual corresponde a 15 periodos a una tasa de interés de 12%."
Valor presente del principal de los $2,000 a recibir al final de los 15 años descontados a una tasa de rendimiento requerida por los inversionistas (rendimiento al vencimiento) del 12%:
$2,000 X 0.183 = $366
"Se ha simplificado el cálculo mediante la utilización de una tabla financiera de valor presente de $1 para encontrar el factor de descuento 0.183 el cual corresponde a 15 periodos a una tasa de interés de 12%."
Precio actual de los bonos:

Valor presente del pago de los intereses………$1,225.98

Valor presente del pago del principal…… 366.00

Precio de los bonos…………………$ 1,591.98



C) PROBLEMA VALUACIÓN DE ACCIONES PREFERENTES

¿Cuál es el precio de las acciones preferentes de una compañía que dará un dividendo a perpetuidad de $200, si la tasa de rendimiento requerida por el inversionista es?




  1. 10%

  2. 8%

  3. 6%


SOLUCIÓN:

Como las acciones preferentes no tienen fecha de vencimiento por lo general representan una perpetuidad no se calculan en el mercado con el pago de ningún principal. Por esta razón el cálculo de su precio (P) o valor se hace dividiendo el dividendo anual (D) esperado entre la tasa de rendimiento requerida por el inversionista (K) como se ilustra en la fórmula (4-2) :

D

P


=

K

p

p

p

(4-2)



  1. $200 ∕ 10% = $2,000

  2. $200 ∕ 8% = $2,500

  3. $200 ∕ 6% = $3,333

Mientras menor es la tasa de rendimiento requerida por el inversionista mayor es la cantidad de dinero que está dispuesto a pagar por una acción preferente.



d) PROBLEMA DE ACCIONES COMUNES

¿Cuál es el precio que un inversionista en acciones comunes está a pagar por una acción de la cual espera un dividendo constante de $20, sin crecimiento anual, si la tasa de rendimiento requerida es del:

  1. 12%,

  2. 10%

  3. 8%?


1   2   3   4   5   6   7   8


La base de datos está protegida por derechos de autor ©bazica.org 2016
enviar mensaje

    Página principal