Guide to science



Descargar 0.81 Mb.
Página1/22
Fecha de conversión29.10.2017
Tamaño0.81 Mb.
  1   2   3   4   5   6   7   8   9   ...   22



Isaac Asimov

Introducción a la ciencia

(Vol. II, Parte 1)

Título original: Asimov's guide to science


Segunda Parte: Ciencias Biológicas*

X. LA MOLÉCULA

Materia Orgánica


El término molécula (de la palabra latina que significa «masa pequeña») originalmente se aplicó a la última unidad indivisible de una sustancia. Y, en cierto sentido, es una partícula simple, debido a que no puede desintegrarse sin perder su identidad. En efecto, una molécula de azúcar o de agua puede dividirse en átomos o grupos simples, pero en este caso deja de ser azúcar o agua. Incluso una molécula de hidrógeno pierde sus características propiedades químicas cuando se escinde en sus dos átomos de hidrógeno constituyentes.

Del mismo modo como el átomo ha sido motivo de gran excitación en la Física del siglo xx, así la molécula fue el sujeto de descubrimientos igualmente excitantes en la Química. Los químicos han sido capaces de desarrollar imágenes detalladas de la estructura de moléculas incluso muy complejas, de identificar el papel desempeñado por moléculas específicas en los sistemas vivos, de crear elaboradas moléculas nuevas, y de predecir el comportamiento de la molécula de una estructura dada con sorprendente exactitud.

Hacia mediados de este siglo, las complejas moléculas que forman las unidades clave de los tejidos vivos, las proteínas o los ácidos nucleicos, fueron estudiadas con todas las técnicas puestas a disposición por una Química y una Física avanzadas. Las dos Ciencias, «Bioquímica» (el estudio de las reacciones químicas que tienen lugar en el tejido vivo) y «Biofísica» (el estudio de las fuerzas y fenómenos físicos implicados en los procesos vivos), confluyeron para formar una nueva disciplina: la «Biología molecular». A través de los hallazgos de la Biología molecular, la Ciencia moderna ha logrado, en una sola generación de esfuerzos, todo salvo definir exactamente dónde se halla la frontera entre lo vivo y lo inanimado.

Pero, hace menos de un siglo y medio, no se comprendía siquiera la estructura de la molécula más sencilla.

Casi todo lo que los químicos de comienzos del siglo XIX podían hacer era dividir la materia en dos grandes categorías. Desde hacía tiempo se habían percatado (incluso en los días de los alquimistas) de que las sustancias pertenecían a dos clases claramente distintas, por lo que se refería a su respuesta al calor. Un grupo —por ejemplo, sal, plomo, agua— permanecía básicamente inalterado después de ser calentado. La sal podía volverse incandescente cuando se calentaba, el plomo se fundía, el agua se evaporaba —pero al enfriarse de nuevo a la temperatura de partida volvían a adquirir su forma original, nada peor, aparentemente, para su experiencia—. Por otra parte, el segundo grupo de sustancias —por ejemplo, el azúcar, el aceite de oliva— cambiaban de forma permanente, por la acción del calor. El azúcar se acaramelaba al calentarse y permanecía carbonizado después de enfriarse; el aceite de oliva se evaporaba y este vapor no se condensaba al enfriarse. Eventualmente, los científicos notaron que las sustancias resistentes al calor procedían por lo general del mundo inanimado del aire, océano, y suelo, mientras que las sustancias combustibles procedían del mundo vivo, bien directamente de la materia viva o de sus restos muertos. En 1807, el químico sueco Jöns Jakob Berzelius denominó «orgánicas» a las sustancias combustibles (debido a que derivaban, directa o indirectamente, de los organismos vivos) y a todas las demás «inorgánicas».

Inicialmente, la Química centró su atención sobre las sustancias inorgánicas. El estudio del comportamiento de los, gases inorgánicos condujo al desarrollo de la teoría atómica. Una vez se estableció tal teoría, se aclaró pronto la naturaleza de las moléculas inorgánicas. El análisis mostró que las moléculas inorgánicas consistían, por lo general, en un pequeño número de átomos diferentes en proporciones definidas. La molécula de agua contenía dos átomos de hidrógeno y uno de oxígeno; la molécula de sal contenía un átomo de sodio y uno de cloro; el ácido sulfúrico contenía dos átomos de hidrógeno, uno de azufre. Y cuatro de oxígeno, etc.

Cuando los químicos comenzaron a analizar las sustancias orgánicas, el cuadro que se les ofreció parecía ser totalmente distinto. Las sustancias podían tener exactamente la misma composición y, no obstante, mostrar propiedades muy distintas. (Por ejemplo, el alcohol etílico está compuesto de 2 átomos de carbono, 1 átomo de oxígeno y 6 átomos de hidrógeno; también está compuesto así el éter dimetílico. No obstante, uno es un líquido a la temperatura ambiente, mientras que el otro es un gas.)

Las moléculas orgánicas contenían muchos más átomos que las inorgánicas simples, y parecían combinadas sin demasiada lógica. Simplemente, los compuestos orgánicos no podían explicarse por las sencillas leyes de la Química, a las que tan maravillosamente se adaptaban las sustancias inorgánicas. Berzelius decidió que la química de la vida era algo distinto, algo que obedecía a su propia serie de sutiles reglas. Sólo el tejido vivo —afirmó—. Podría crear un compuesto orgánico. Su punto de vista es un ejemplo del «vitalismo».

¡Luego, en 1828, el químico alemán Friedrich Wöhler, un discípulo de Berzelius, produjo una sustancia orgánica en el laboratorio! La obtuvo al calentar un compuesto denominado cianato amónico, que era considerado en general como inorgánico. Wöhler se quedó estupefacto al descubrir que, al ser calentado, ese material se convertía en una sustancia blanca idéntica en sus propiedades a la «urea», un compuesto de la orina. Según las teorías de Berzelius, sólo el riñón vivo podía formar la urea, y Wöhler la acababa de producir a partir de una sustancia inorgánica, simplemente al aplicarle algo de calor. Wöhler repitió la experiencia muchas veces, antes de atreverse a publicar su descubrimiento. Cuando finalmente lo hizo, Berzelius y otros, al principio, rehusaron creerlo. Pero otros químicos confirmaron los resultados. Además de eso, lograron sintetizar muchos otros compuestos orgánicos a partir de precursores inorgánicos. El primero en lograr la producción de un compuesto orgánico a partir de sus elementos fue el químico alemán Adolf Wilhelm Hermann Kolbe, quien, en 1845, produjo ácido acético de esta forma. Fue realmente esto lo que puso punto final a la versión vitalista de Berzelius. Cada vez se hizo más y más evidente que las mismas leyes químicas se aplicaban por igual a las moléculas inorgánicas. Eventualmente, se ofreció una sencilla definición para distinguir entre las sustancias orgánicas y las inorgánicas: todas las sustancias que contenían carbono (con la posible excepción de unos pocos compuestos sencillos, tales como el dióxido de carbono) se denominaron orgánicas; las restantes eran inorgánicas.

Para poder enfrentarse con éxito a la compleja Química nueva, los químicos precisaban un simple método de abreviatura para representar los compuestos, y, afortunadamente, ya Berzelius había sugerido un sistema de símbolos conveniente y racional. Los elementos fueron designados mediante las abreviaturas de sus nombres latinos. Así C sería el símbolo para el carbono, O para el oxígeno, H para el hidrógeno, N para el nitrógeno, S para el azufre, P para el fósforo, etc... Cuando dos elementos comenzaban con la misma letra, se utilizaba una segunda letra para distinguirlos entre sí: por ejemplo, Ca para el Calcio, Cl para el cloro, Cd para el cadmio, Co para cobalto, Cr para el cromo, etc. Sólo en unos pocos casos, los nombres latinos o latinizados (y las iniciales) son distintos de las españolas, así: el hierro (ferrum) tiene el Fe; la plata (argentum), el Ag; el oro (aurum), el Au; el cobre (cuprum), el Cu; el estaño (stannum), el Sn; el mercurio (hydragyrum), el Hg; el antimonio (stibium), el Sb; el sodio (natrium), el Na; y el potasio (kalium), el K. Con este sistema es fácil simbolizar la composición de una molécula. El agua se escribe H2O (indicando así que la molécula consiste de dos átomos de hidrógeno y un átomo de oxígeno); la sal, NaCl; el ácido sulfúrico, H2SO4, etc. A ésta se la denomina la «fórmula empírica» de un compuesto; indica de qué está formado el compuesto pero no dice nada acerca de su estructura, es decir, la forma en que los átomos de la molécula se hallan unidos entre sí.

El barón Justus von Liebig, un colaborador de Wöhler, se dedicó al estudio de la composición de una serie de sustancias orgánicas, aplicando el «análisis químico» al campo de la Química orgánica. Calentaba una pequeña cantidad de una sustancia orgánica y retenía los gases formados (principalmente CO2 y vapor de agua, H2O) con sustancias químicas apropiadas. Luego pesaba las sustancias químicas utilizadas para captar los productos de combustión, al objeto de ver cómo había aumentado su peso a causa de los productos captados. A partir del peso podía determinar la cantidad de carbono, hidrógeno y oxígeno existentes en la sustancia original. Luego era fácil calcular, a partir de los pesos atómicos, el número de cada tipo de átomo en la molécula. De esta forma, por ejemplo, estableció que la molécula del alcohol etílico tenía la fórmula C2H6O.

El método de Liebig no podía medir el nitrógeno presente en los compuestos orgánicos, pero el químico francés Jean-Baptiste-André Dumas ideó un método de combustión que recogía el nitrógeno gaseoso liberado a partir de las sustancias. Hizo uso de este método para analizar los gases de la atmósfera, con una exactitud sin precedentes, en 1841.

Los métodos del «análisis orgánico» se hicieron cada vez más y más precisos hasta alcanzar verdaderos prodigios de exactitud con los «métodos microanalíticos» del químico austríaco Fritz Pregl. Éste ideó técnicas, a principios de 1900, para el análisis exacto de cantidades de compuestos orgánicos que apenas se podían distinguir a simple vista, y, a consecuencia de ello, recibió el premio Nobel de Química en 1923.

Desgraciadamente, la simple determinación de las fórmulas empíricas de los compuestos orgánicos no permitía dilucidar fácilmente su química. Al contrario que los compuestos inorgánicos, que usualmente consistían de 2 ó 3, o, a lo sumo, de una docena de átomos, las moléculas orgánicas eran con frecuencia enormes. Liebig halló que la fórmula de la morfina era C17H19O3N y la de la estricnina C21H22O2N2.

Los químicos apenas sabían qué hacer con moléculas tan grandes, ni cómo iniciar o acabar sus fórmulas. Wöhler y Liebig intentaron agrupar los átomos en agregados más pequeños denominados «radicales», al tiempo que elaboraron teorías para demostrar que diversos compuestos estaban formados por radicales específicos en cantidades y combinaciones diferentes. Algunos de los sistemas fueron sumamente ingeniosos, pero en realidad ninguno aportaba suficiente explicación. Fue particularmente difícil explicar por qué compuestos con la misma fórmula empírica, tales como el alcohol etílico y el dimetil éter, poseían diferentes propiedades.

Este fenómeno fue dilucidado por vez primera hacia 1820 por Liebig y Wöhler. El primero estudiaba un grupo de compuestos llamados «fulminatos», mientras que Wöhler examinaba un grupo denominado «isocianatos»; ambos grupos resultaron tener las mismas fórmulas empíricas: por así decirlo, los elementos se hallaban presentes en proporciones iguales. Berzelius, el dictador químico en aquella época, fue informado de esta particularidad, pero rechazó aceptar tal creencia hasta que, en 1830, él mismo descubrió algunos ejemplos. Denominó a tales compuestos, de diferentes propiedades pero con elementos presentes en las mismas proporciones, «isómeros» (a partir de las palabras griegas que significan «partes iguales»). La estructura de las moléculas orgánicas era realmente un verdadero rompecabezas en aquellos días.

Los químicos, perdidos en esta jungla de la Química orgánica, comenzaron a ver un rayo de luz, en 1850, al descubrir que un determinado átomo se podía combinar solamente con un cierto número de otros átomos. Por ejemplo, el átomo de hidrógeno aparentemente se podía unir sólo a un único átomo de otro elemento: formaría ácido clorhídrico, HCl, pero nunca HCl2. De manera similar, el cloro y el sodio solamente podrían unirse a otro átomo, formando en este caso el NaCl. Por otra parte, un átomo de oxígeno podría unirse a dos átomos de otro elemento: por ejemplo, H2O. El nitrógeno podría unirse a tres: por ejemplo, NH3 (amoníaco). Y el carbono podía combinarse hasta con cuatro: por ejemplo, Cl4C (tetracloruro de carbono).

En resumen, parecía como si cada tipo de átomo tuviera un cierto número de ganchos mediante los cuales pudiera unirse a otros átomos. El químico inglés Edward Frankland denominó a estos ganchos enlaces de «valencia», a partir de una palabra latina que significa «poder», para significar los poderes de combinación de los elementos.

El químico alemán Friedrich August Kekulé von Stradonitz, verificó que, si se asignaba al carbono una valencia de 4 y si se suponía que los átomos de carbono podían utilizar aquellas valencias, al menos en parte, para unirse en cadenas, en este caso podría dibujarse un mapa a través de aquella jungla orgánica. Su técnica fue perfeccionada haciéndola más visual gracias a la sugerencia de un químico escocés, Archibald Scott Couper, según la que estas fuerzas de combinación de los átomos («enlaces», tal como generalmente se las denomina) se representan en la forma de pequeños guiones. De esta manera, las moléculas orgánicas podrían edificarse al igual que muchos juegos de estructuras «engarzables».

En 1861, Kekulé publicó un texto con muchos ejemplos de este sistema, que demostró su conveniencia y valor. La «fórmula estructural» se convirtió en el sello del químico orgánico.

Por ejemplo, las moléculas del metano (CH4), el amoníaco (NH3), y el agua (H2O), respectivamente, podían ser representadas de esta forma:

Las moléculas orgánicas podían representarse como cadenas de átomos de carbono con átomos de hidrógeno unidos a los lados. Así el butano (C4H10) tendría la estructura:



El oxígeno o el nitrógeno podían entrar a formar parte de la cadena de la siguiente manera, representando a los compuestos alcohol metílico (CH4O) y metilamina (CH5N) respectivamente, de la forma siguiente:



Un átomo que poseyera más de un gancho, tal como el carbono, con cuatro de ellos, no precisaba utilizar cada uno para un átomo distinto: podía formar un enlace doble o triple con uno de sus vecinos, como en el etileno (C2H4) o el acetileno (C2H2):



Entonces podía apreciarse fácilmente cómo dos moléculas podían tener el mismo número de átomos de cada elemento y, no obstante, diferir en sus propiedades. Los dos isómeros debían diferir en la disposición de los átomos. Por ejemplo, las fórmulas estructurales del alcohol etílico y el dimetil éter, respectivamente, podían escribirse:



Cuanto mayor es el número de átomos en una molécula, tanto mayor es el número de disposiciones posibles y por tanto el número de isómeros. Por ejemplo, el heptano, una molécula constituida por 7 átomos de carbono y 15 átomos de hidrógeno, puede ser dispuesta en nueve formas distintas; en otras palabras, pueden existir nueve diferentes heptanos, cada uno con sus particulares propiedades. Estos nueve isómeros se asemejan considerablemente entre sí, pero es sólo una semejanza aparente. Los químicos han preparado la totalidad de estos nueve isómeros, pero nunca han conseguido hallar un décimo isómero, lo que constituye una buena demostración en favor del sistema de Kekulé.

Un compuesto que contenga 40 átomos de carbono y 82 átomos de hidrógeno podrá mostrar 62.5 billones de disposiciones distintas o isómeros. Y una molécula orgánica de este tamaño no es en modo alguno infrecuente.

Sólo los átomos de carbono pueden unirse entre sí para formar largas cadenas. Otros átomos pueden formar una cadena a lo sumo de una docena y media de unidades. Este es el motivo por el cual las moléculas inorgánicas son en general sencillas, y por qué raras veces tienen isómeros. La mayor complejidad de la molécula orgánica introduce tantas posibilidades de isomería, que casi se conocen dos millones de compuestos orgánicos, formándose diariamente otros nuevos, mientras que se espera descubrir un número virtualmente ilimitado de ellos.

En la actualidad, las fórmulas estructurales son utilizadas universalmente como guías visuales indispensables de la naturaleza de las moléculas orgánicas. Como abreviatura, a menudo los químicos escriben la fórmula de la molécula en términos de los grupos de átomos («radicales») que la constituyen, tales como los radicales metilo (CH3) y metileno (CH2). Así la fórmula del butano puede escribirse como CH3CH2CH2CH3.

  1   2   3   4   5   6   7   8   9   ...   22


La base de datos está protegida por derechos de autor ©bazica.org 2016
enviar mensaje

    Página principal