Termodinámica del agua


¿Cómo es que hay tanta agua en el mundo?



Descargar 154.18 Kb.
Página3/4
Fecha de conversión01.07.2017
Tamaño154.18 Kb.
1   2   3   4

¿Cómo es que hay tanta agua en el mundo?


El agua es un compuesto de hidrógeno y oxígeno; el hidrógeno es el átomo más abundante del Universo y el oxígeno el tercero (después del helio), así que la molécula de H2O es corriente y, aunque inestable en las altas temperaturas estelares, se encuentra presente por todas partes en el Universo (planetas, lunas, cometas y gas interestelar), normalmente en forma de hielo; en total puede que haya del orden de 1 ppm (partes por millón) en masa. Lo que sí es raro es que haya en la Tierra tanta agua en estado líquido, y ello es debido a la adecuada temperatura terrestre, que no sólo depende de su distancia al Sol sino de la presencia de vida, que ha ido generando oxígeno y consumiendo el metano, dióxido de carbono, amoníaco y otros gases propios de la formación de los planetas, y modificando así el efecto invernadero (ver más adelante 'Qué es el cambio climático').
En primera aproximación puede decirse que en la Tierra hay infinita agua si la comparamos con la humanidad: en volumen, 1400 millones de km3 de agua frente a 0,3 km3 de 'humanidad' (6000 millones de personas a una media de 50 litros). Y desde que se formó el océano hace unos 4000 millones de años apenas han disminuido las reservas un 2%. Repartiendo toda el agua sobre el globo se alcanzaría un espesor medio de casi 3000 m (Tabla 2), en comparación con unos 10 000 m de espesor de aire en condiciones estándar y de unos 150 m de tierra emergida (repartiéndola sobre el globo).
Tabla 2. Almacenes naturales del agua.

Masa de agua

%

%

%

Altura equivalente

Tiempo de

residencia



Total ecosfera (1,41018 m3= 1400 millones de km3)

100







2800 m



- salada

97,5







2730 m

3 000 años

- dulce

2,5

100




70 m

variable

  • -helada




70




50 m

10 000 años

  • -subsuelo (la mitad a menos de 1 km)




30




20 m

100 años

  • -epicontinental y atmosférica




1

100

0,6 m

variable

  • -lagos y humedades (50% salobre)







90

0,5 m

100 años

  • -atmósfera (vapor y nubes)







5

0,03 m

9 días

  • -seres vivos







3

0,02 m

1 mes

  • -ríos







1

0,006 m

15 días

  • -embalses







0,3

0,002 m

1 año

¿Qué es en teoría el agua?


¿Cómo explicar lo que es el agua, i.e. cuál es su teoría?. Del agua se tienen referencias escritas desde los albores de la Historia y todas las teogonías primitivas tienen una diosa agua-madre. En nuestra cultura occidental, puede decirse que la base está en el griego Tales de Mileto (hacia el 600 a.C.), que viajó a Egipto (calculó la altura de una pirámide comparándola con la sombra de su persona), conoció la cultura mesopotámica (predijo un eclipse de sol el 585 a.C), y postuló que el agua era el origen de toda la materia (la única sustancia que pasaba de sólido a líquido y a gas, disolvía y decantaba sólidos, etc.)
La teoría que prevaleció durante dos mil años (desde Empédocles en el 450 a.C. hasta Paracelso en 1520) fue la de que había cuatro elementos irreductibles que formaban parte de todas las sustancias conocidas: el agua (fría y húmeda), la tierra (fría y seca), el aire (caliente y húmedo) y el fuego (caliente y seco). Por ejemplo, la madera estaba constituida por tierra (ceniza) y fuego (ardía), las plantas por agua (se podían secar), tierra (ceniza) y fuego (ardían). Es curioso darse cuenta de que de los cuatro elementos tres eran fluidos y sólo uno sólido. Hoy día sabemos que de los cuatro elementos tres son en realidad compuestos y mezclas: H2O, silicatos y muchos otros, N2 y O2, mientras que el fuego es en realidad un proceso de oxidación violenta, más identificado por la radiación inmaterial que genera (luz de la llama) que por las sustancias que participan, carbono e hidrógeno con el oxígeno del aire principalmente. Es también digno de consideración que el agua estuviese situada en medio, entre el cielo y la tierra, mientras que el fuego unas veces era situado arriba (el Sol) y otras abajo (los volcanes).
.cielo_infierno_

Fig. 2. Ilustración sobre la posición privilegiada del agua y la indecisión respecto al fuego (curiosamente, resulta que tanto el Sol como el núcleo de la Tierra están a la misma temperatura, unos 6000 K).


El conocimiento de cualquier cosa se va mejorando sin fin, aunque no uniformemente, sino a saltitos, de los cuales tal vez el mayor se dio a finales del s. XVIII cuando Lavoisier en 1783, al repetir unos experimentos descritos por Cavendish en 1766 (el que midió la masa de la Tierra a partir de la fuerza gravitatoria entre dos masas en una balanza de torsión), llegó a comprender que el agua no era un elemento sino un compuesto, y, lo que era todavía más sorprendente, compuesto de dos 'aires' (hasta Lavoisier todos los gases eran aires: el H2 aire inflamable y el O2 aire desflogistado). Puede decirse por tanto que fue Lavoisier en 1783 quien primero comprendió lo que es el agua, demostrando que estaba formada por hidrógeno (generador de agua) y oxígeno (generador de oxácidos, =ácido). Nicholson y Carlisle en 1800 descompusieron el agua, H2O=H2+(1/2)O2, haciendo pasar a su través una corriente eléctrica (lo que Faraday en 1832 denominó electrólisis). Pero fue Berzelius en 1826 el primero en proponer la fórmula correcta del agua: H2O (aunque en aquel tiempo se escribía H2O), ya que hasta entonces se creía que era HO.
En la ciencia no cabe la seguridad y las teorías nunca pueden ser definitivas; se confía en que lo que ayer funcionaba, mañana seguirá funcionando, pero si no, se actualiza el modelo y a seguir mejorando. Ha habido grandes fiascos al respecto, incluso en nuestros días, como la teoría de la poliagua (Polywater) que estuvo en boga del 1968 al 1971, o la técnica de la fusión nuclear fría que acaparó la atención mundial entre 1989 y 1990 (la Universidad de Utah llegó a invertir 109 Pta en un centro que cerró en 1998).
Ya Boyle en 1666, y algunos otros, sintetizaron agua inintencionadamente en la combustión del hidrógeno en aire, pero se pensaba que el rocío que se formaba provenía de la humedad del aire. Fue Lavoisier y otros contemporáneos los que produjeron la combustión controlada de hidrógeno y oxígeno. Entonces, el hidrógeno se obtenía goteando ácido sulfúrico sobre limaduras de hierro (hoy se obtiene por reformado del gas natural o por hidrólisis), y el oxígeno se obtenía calentando hasta descomponer óxido de mercurio o clorato potásico (hoy se obtiene por destilación del aire). Más controlada que la síntesis por combustión fue la síntesis que en 1830 Grove presentó a la Royal Society: la primera pila electroquímica de combustible, H2+(1/2)O2=H2O con electrolito alcalino, que se aplicó por primera vez en los años 1960 para vehículos espaciales. En la última década del s. XX las pilas de combustible, de todo tipo, han sido muy investigadas, y ya ofrecen un futuro próximo muy prometedor.
A partir del agua líquida, obtener vapor artificialmente es muy fácil porque calentar es sencillo: basta quemar un combustible (e.g. madera) con aire y la humanidad hace ya 500 000 años que domina esa tecnología (según vestigios en Torralba, Soria), pero refrigerar para obtener hielo no es tan fácil. En 1755, W. Cullen, profesor de química en Edimburgo, logró producir hielo por contacto con un recipiente con éter que era aspirado con una bomba de vacío, pero el sistema sólo funcionaba mientras quedaba éter. Fue J. Perkins quien en 1834 patentó en Londres el primer frigorífico de compresión de vapor, funcionando también con éter, que es explosivo. Las primeras máquinas comerciales de refrigeración, debidas al americano J. Gorrie, 1844, eran de compresión de aire y de escaso rendimiento, pero la comercialización apenas prosperó hasta que el alemán K. von Linde en 1876 no popularizó la máquina de compresión de vapor de amoníaco, desarrollada en 1859 por el francés F. Carré (en 1874 el suizo R. Pictet desarrolló la máquina de compresión de SO2, con la que se construyó la primera pista de patinaje sobre hielo, en Londres). Los primeros barcos frigoríficos fueron el Paraguay, que trajo carne congelada desde Argentina a Francia en 1877 usando una máquina de amoníaco, y el Strathleven, que trajo carne de cordero desde Australia a Inglaterra en 1880 usando una máquina de aire. Hay que añadir la resistencia inicial del público a consumir hielo artificial, que se creía dañino para la salud (en [5] pueden encontrarse más detalles sobre el hielo, como por ejemplo sus coloraciones).



Compartir con tus amigos:
1   2   3   4


La base de datos está protegida por derechos de autor ©bazica.org 2019
enviar mensaje

    Página principal